Forster, P. et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte, V. et al. Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 923–1054. https://doi.org/10.1017/9781009157896.009 (2021).
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).
Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782 (2020).
Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).
Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).
Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).
Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: Winners, losers, and the future. Oceanogr 29, 273–285 (2016).
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
Smith, K. E. et al. Biological impacts of marine heatwaves. Ann. Rev. Mar. Sci. 15, 119–145 (2023).
Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).
Kendrick, G. A. et al. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6, 1–15 (2019).
Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 1–11 (2020).
Shanks, A. L. et al. Marine heat waves, climate change, and failed spawning by coastal invertebrates. Limnol. Oceanogr. 65, 627–636 (2020).
Garrabou, J. et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob. Chang. Biol. 28, 5708–5725 (2022).
Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science. 374 https://doi.org/10.1126/science.abj3593 (2021).
Wernberg, T. et al. Impacts of climate change on marine foundation species. Ann. Rev. Mar. Sci. 16, 247–282 (2024).
Ellison, A. M. Foundation species, non-trophic interactions, and the value of being common. Iscience 13, 254–268 (2019).
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
Sen Gupta, A. et al. Marine heatwaves: Definition duel heats up. Nature 617, 465–465 (2023).
Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanogr 31, 162–173 (2018a).
Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).
Welch, H. et al. Impacts of marine heatwaves on top predator distributions are variable but predictable. Nat. Commun. 14, 5188 (2023).
Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).
Verdura, J. et al. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9, 1–11 (2019).
Montie, S. & Thomsen, M. S. Long‐term community shifts driven by local extinction of an iconic foundation species following an extreme marine heatwave. Ecol. Evol. 13, e10235 (2023).
Caputi, N. et al. Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 1–18 (2019).
Wernberg, T. Marine heatwave drives collapse of kelp forests in Western Australia. In Ecosystem Collapse and Climate Change, Vol. 241, ed. Canadell, J. G., Jackson, R. B., pp. 325–343. Switzerland: Springer. https://doi.org/10.1007/978-3-030-71330-0 (2021).
Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).
McClanahan, T. R., Maina, J., Moothien-Pillay, R. & Baker, A. C. Effects of geography, taxa, water flow, and temperature variation on coral bleaching intensity in Mauritius. Mar. Ecol. Prog. Ser. 298, 131–142 (2005).
Gonzalez-Espinosa, P. C. & Donner, S. D. Cloudiness reduces the bleaching response of coral reefs exposed to heat stress. Glob. Chang. Biol. 27, 3474–3486 (2021).
Van Woesik, R. et al. Climate‐change refugia in the sheltered bays of Palau: analogs of future reefs. Ecol. Evol. 2, 2474–2484 (2012).
Wernberg, T. et al. Biology and ecology of the globally significant kelp Ecklonia radiata. Oceanogr. Mar. Biol. 57, 265–324 (2019).
Filbee-Dexter, K., Wernberg, T., Fredriksen, S., Norderhaug, K. M. & Pedersen, M. F. Arctic kelp forests: Diversity, resilience and future. Glob. Planet Change 172, 1–14 (2019).
Marbà, N., Krause-Jensen, D., Masqué, P. & Duarte, C. M. Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Sci. Rep. 8, 14024 (2018).
Assis, J., Serrão, E. A., Duarte, C. M., Fragkopoulou, E. & Krause-Jensen, D. Major expansion of marine forests in a warmer Arctic. Front. Mar. Sci. 9, 850368 (2022).
Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601 (2011).
Tait, L. W., Thoral, F., Pinkerton, M. H., Thomsen, M. S. & Schiel, D. R. Loss of the giant kelp Macrocystis pyrifera driven by marine heatwaves and exacerbated by poor water clarity in New Zealand. Front. Mar. Sci. 8, 721087 (2021).
Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).
Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 1–9 (2019).
Lachs, L. et al. Emergent increase in coral thermal tolerance reduces mass bleaching under climate change. Nat. Comms. 14, 4939 (2023).
Spillman, C. M., Smith, G. A., Hobday, A. J. & Hartog, J. R. Onset and decline rates of marine heatwaves: global trends, seasonal forecasts, and marine management. Front. Clim. 3, 182 (2021).
Hartog, J. R., Spillman, C. M., Smith, G. & Hobday, A. J. Forecasts of marine heatwaves for marine industries: reducing risk, building resilience and enhancing management responses. Deep Sea Res Ii. 209, 105276 (2023).
Hobday, A. J. et al. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5, 137 (2018b).
Hobday, A. J. et al. With the arrival of El Niño, prepare for stronger marine heatwaves. Nature 621, 38–41 (2023).
Pershing, A. J., Mills, K. E., Dayton, A. M., Franklin, B. S. & Kennedy, B. T. Evidence for adaptation from the 2016 marine heatwave in the Northwest Atlantic Ocean. Oceanogr 31, 152–161 (2018).
Bass, A. V., Smith, K. E. & Smale, D. A. Marine heatwaves and decreased light availability interact to erode the ecophysiological performance of habitat‐forming kelp species. J. Phycol. https://doi.org/10.1111/jpy.13332 (2023).
Pansch, C. et al. Heat waves and their significance for a temperate benthic community: a near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).
Carr, M. H., Caselle, J. E., Koehn, K. D. & Malone, D. P. PISCO Kelp Forest Community Surveys. PISCO_kelpforest.1.6 (https://data.piscoweb.org/catalog/metacat/PISCO_kelpforest.1.6/default) (2020).
Beas et al. Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes. Glob. Chang. Biol. 26, 6457–6473 (2020).
Schlegel, R. W. & Smit, A. J. heatwaveR: A central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 3, 821 (2018).
Van Woesik, R. & Kratochwill, C. A global coral-bleaching database, 1980–2020. Sci. Data. 9, 20 (2022).
Tan, H.-J., Cai, R.-S. & Wu, R.-G. Summer marine heatwaves in the South China Sea: Trend, variability and possible causes. Adv. Clim. Change Res. 13, 323–332 (2022).
Magel, C. L., Chan, F., Hessing-Lewis, M. & Hacker, S. D. Differential responses of eelgrass and macroalgae in Pacific northwest estuaries following an unprecedented NE Pacific Ocean marine heatwave. Front. Mar. Sci. 9, 838967 (2022).
Bell, T. W. et al. Kelpwatch: A new visualization and analysis tool to explore kelp canopy dynamics reveals variable response to and recovery from marine heatwaves. PLoS ONE 18, e0271477 (2023).
Moriarty, T., Leggat, W., Heron, S. F., Steinberg, R. & Ainsworth, T. D. Bleaching, mortality and lengthy recovery on the coral reefs of Lord Howe Island. The 2019 marine heatwave suggests an uncertain future for high-latitude ecosystems. PLOS Clim. 2, e0000080 (2023).
Bruckner, A. W. Life-saving products from coral reefs. Issues Sci. Technol. 18, 39–44 (2002).
Glynn, P. W. Coral reef bleaching: ecological perspectives. Coral Reefs. 12, 1–17 (2013).
Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).
RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ (2020).
Anon. “Te Rūnanga o Kaikōura, Te Poha o Tohu Raumati, Te Rūnanga o Kaikōura 30 (Environmental Management Plan)”. (Te Rūnanga o Kaikōura, Takahanga Marae Kaikōura, New Zealand, 2007).
Doshi, A. et al. Loss of economic value from coral bleaching in SE Asia. 12th International Coral Reef Symposium 9–13 (2012).
Sheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A. & Payet, R. Coral mortality increases wave energy reaching shores protected by reef flats: examples from the Seychelles. Estuar. Coast. Shelf Sci. 64, 223–234 (2005).
Robinson, J. P., Wilson, S. K., Jennings, S. & Graham, N. A. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Chang. Biol. 25, 2739–2750 (2019).
Gurgel, C. F. et al. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30, 1199–1206 (2020).
Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 1–12 (2017).
Sukhdev, P., Wittmer, H. & Miller, D. The economics of ecosystems and biodiversity (TEEB): challenges and responses. Nature in the balance: the economics of biodiversity. 135–152 https://students.aiu.edu/submissions/profiles/resources/onlineBook/B5e9K7_Nature_in_the_Balance_The_Economics_of_Biodiversity.pdf#page=156 (2014).
Rassweiler, A., Novak, M., Okamoto, D., Byrnes, J. & Krumhansl, K. Global Kelp Time series from NCEAS/KEEN Working Group. Florida State University, Oregon State University, Simon Fraser University, University of Massachusetts Boston. https://catalogue-temperatereefbase.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/ecbe5cc3-3fbf-4569-b5e8-07c2201fcb9c. Accessed 1/09/2022. (2016).
Reed, D. & Miller, R. SBC LTER: Reef: Kelp Forest Community Dynamics: Cover of sessile organisms, Uniform Point Contact ver 31. Environmental Data Initiative. https://doi.org/10.6073/pasta/7b9f59d4875c4e235448dd42ff7044ad. Accessed 01/09/2022. (2022).
Read More