Global Events

Global impacts of marine heatwaves on coastal foundation species

  • Forster, P. et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte, V. et al. Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 923–1054. https://doi.org/10.1017/9781009157896.009 (2021).

  • Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).

    Article 

    Google Scholar
     

  • Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: Winners, losers, and the future. Oceanogr 29, 273–285 (2016).

    Article 

    Google Scholar
     

  • Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Smith, K. E. et al. Biological impacts of marine heatwaves. Ann. Rev. Mar. Sci. 15, 119–145 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kendrick, G. A. et al. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6, 1–15 (2019).

    Article 

    Google Scholar
     

  • Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 1–11 (2020).

    Article 

    Google Scholar
     

  • Shanks, A. L. et al. Marine heat waves, climate change, and failed spawning by coastal invertebrates. Limnol. Oceanogr. 65, 627–636 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Garrabou, J. et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob. Chang. Biol. 28, 5708–5725 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science. 374 https://doi.org/10.1126/science.abj3593 (2021).

  • Wernberg, T. et al. Impacts of climate change on marine foundation species. Ann. Rev. Mar. Sci. 16, 247–282 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Ellison, A. M. Foundation species, non-trophic interactions, and the value of being common. Iscience 13, 254–268 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sen Gupta, A. et al. Marine heatwaves: Definition duel heats up. Nature 617, 465–465 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanogr 31, 162–173 (2018a).

    Article 

    Google Scholar
     

  • Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).

    Article 

    Google Scholar
     

  • Welch, H. et al. Impacts of marine heatwaves on top predator distributions are variable but predictable. Nat. Commun. 14, 5188 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Verdura, J. et al. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9, 1–11 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Montie, S. & Thomsen, M. S. Long‐term community shifts driven by local extinction of an iconic foundation species following an extreme marine heatwave. Ecol. Evol. 13, e10235 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caputi, N. et al. Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 1–18 (2019).

    Article 

    Google Scholar
     

  • Wernberg, T. Marine heatwave drives collapse of kelp forests in Western Australia. In Ecosystem Collapse and Climate Change, Vol. 241, ed. Canadell, J. G., Jackson, R. B., pp. 325–343. Switzerland: Springer. https://doi.org/10.1007/978-3-030-71330-0 (2021).

  • Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).

    Article 
    ADS 

    Google Scholar
     

  • McClanahan, T. R., Maina, J., Moothien-Pillay, R. & Baker, A. C. Effects of geography, taxa, water flow, and temperature variation on coral bleaching intensity in Mauritius. Mar. Ecol. Prog. Ser. 298, 131–142 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Gonzalez-Espinosa, P. C. & Donner, S. D. Cloudiness reduces the bleaching response of coral reefs exposed to heat stress. Glob. Chang. Biol. 27, 3474–3486 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Woesik, R. et al. Climate‐change refugia in the sheltered bays of Palau: analogs of future reefs. Ecol. Evol. 2, 2474–2484 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wernberg, T. et al. Biology and ecology of the globally significant kelp Ecklonia radiata. Oceanogr. Mar. Biol. 57, 265–324 (2019).

    Article 

    Google Scholar
     

  • Filbee-Dexter, K., Wernberg, T., Fredriksen, S., Norderhaug, K. M. & Pedersen, M. F. Arctic kelp forests: Diversity, resilience and future. Glob. Planet Change 172, 1–14 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Marbà, N., Krause-Jensen, D., Masqué, P. & Duarte, C. M. Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Sci. Rep. 8, 14024 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Assis, J., Serrão, E. A., Duarte, C. M., Fragkopoulou, E. & Krause-Jensen, D. Major expansion of marine forests in a warmer Arctic. Front. Mar. Sci. 9, 850368 (2022).

    Article 

    Google Scholar
     

  • Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Tait, L. W., Thoral, F., Pinkerton, M. H., Thomsen, M. S. & Schiel, D. R. Loss of the giant kelp Macrocystis pyrifera driven by marine heatwaves and exacerbated by poor water clarity in New Zealand. Front. Mar. Sci. 8, 721087 (2021).

    Article 

    Google Scholar
     

  • Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 1–9 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lachs, L. et al. Emergent increase in coral thermal tolerance reduces mass bleaching under climate change. Nat. Comms. 14, 4939 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Spillman, C. M., Smith, G. A., Hobday, A. J. & Hartog, J. R. Onset and decline rates of marine heatwaves: global trends, seasonal forecasts, and marine management. Front. Clim. 3, 182 (2021).

    Article 

    Google Scholar
     

  • Hartog, J. R., Spillman, C. M., Smith, G. & Hobday, A. J. Forecasts of marine heatwaves for marine industries: reducing risk, building resilience and enhancing management responses. Deep Sea Res Ii. 209, 105276 (2023).

    Article 

    Google Scholar
     

  • Hobday, A. J. et al. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5, 137 (2018b).

    Article 

    Google Scholar
     

  • Hobday, A. J. et al. With the arrival of El Niño, prepare for stronger marine heatwaves. Nature 621, 38–41 (2023).

  • Pershing, A. J., Mills, K. E., Dayton, A. M., Franklin, B. S. & Kennedy, B. T. Evidence for adaptation from the 2016 marine heatwave in the Northwest Atlantic Ocean. Oceanogr 31, 152–161 (2018).

    Article 

    Google Scholar
     

  • Bass, A. V., Smith, K. E. & Smale, D. A. Marine heatwaves and decreased light availability interact to erode the ecophysiological performance of habitat‐forming kelp species. J. Phycol. https://doi.org/10.1111/jpy.13332 (2023).

  • Pansch, C. et al. Heat waves and their significance for a temperate benthic community: a near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Carr, M. H., Caselle, J. E., Koehn, K. D. & Malone, D. P. PISCO Kelp Forest Community Surveys. PISCO_kelpforest.1.6 (https://data.piscoweb.org/catalog/metacat/PISCO_kelpforest.1.6/default) (2020).

  • Beas et al. Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes. Glob. Chang. Biol. 26, 6457–6473 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Schlegel, R. W. & Smit, A. J. heatwaveR: A central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 3, 821 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Van Woesik, R. & Kratochwill, C. A global coral-bleaching database, 1980–2020. Sci. Data. 9, 20 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, H.-J., Cai, R.-S. & Wu, R.-G. Summer marine heatwaves in the South China Sea: Trend, variability and possible causes. Adv. Clim. Change Res. 13, 323–332 (2022).

    Article 

    Google Scholar
     

  • Magel, C. L., Chan, F., Hessing-Lewis, M. & Hacker, S. D. Differential responses of eelgrass and macroalgae in Pacific northwest estuaries following an unprecedented NE Pacific Ocean marine heatwave. Front. Mar. Sci. 9, 838967 (2022).

    Article 

    Google Scholar
     

  • Bell, T. W. et al. Kelpwatch: A new visualization and analysis tool to explore kelp canopy dynamics reveals variable response to and recovery from marine heatwaves. PLoS ONE 18, e0271477 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriarty, T., Leggat, W., Heron, S. F., Steinberg, R. & Ainsworth, T. D. Bleaching, mortality and lengthy recovery on the coral reefs of Lord Howe Island. The 2019 marine heatwave suggests an uncertain future for high-latitude ecosystems. PLOS Clim. 2, e0000080 (2023).

    Article 

    Google Scholar
     

  • Bruckner, A. W. Life-saving products from coral reefs. Issues Sci. Technol. 18, 39–44 (2002).

  • Glynn, P. W. Coral reef bleaching: ecological perspectives. Coral Reefs. 12, 1–17 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).

    Article 
    ADS 

    Google Scholar
     

  • RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ (2020).

  • Anon. “Te Rūnanga o Kaikōura, Te Poha o Tohu Raumati, Te Rūnanga o Kaikōura 30 (Environmental Management Plan)”. (Te Rūnanga o Kaikōura, Takahanga Marae Kaikōura, New Zealand, 2007).


    Google Scholar
     

  • Doshi, A. et al. Loss of economic value from coral bleaching in SE Asia. 12th International Coral Reef Symposium 9–13 (2012).

  • Sheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A. & Payet, R. Coral mortality increases wave energy reaching shores protected by reef flats: examples from the Seychelles. Estuar. Coast. Shelf Sci. 64, 223–234 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Robinson, J. P., Wilson, S. K., Jennings, S. & Graham, N. A. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Chang. Biol. 25, 2739–2750 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gurgel, C. F. et al. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30, 1199–1206 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 1–12 (2017).

    Article 

    Google Scholar
     

  • Sukhdev, P., Wittmer, H. & Miller, D. The economics of ecosystems and biodiversity (TEEB): challenges and responses. Nature in the balance: the economics of biodiversity. 135–152 https://students.aiu.edu/submissions/profiles/resources/onlineBook/B5e9K7_Nature_in_the_Balance_The_Economics_of_Biodiversity.pdf#page=156 (2014).

  • Rassweiler, A., Novak, M., Okamoto, D., Byrnes, J. & Krumhansl, K. Global Kelp Time series from NCEAS/KEEN Working Group. Florida State University, Oregon State University, Simon Fraser University, University of Massachusetts Boston. https://catalogue-temperatereefbase.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/ecbe5cc3-3fbf-4569-b5e8-07c2201fcb9c. Accessed 1/09/2022. (2016).

  • Reed, D. & Miller, R. SBC LTER: Reef: Kelp Forest Community Dynamics: Cover of sessile organisms, Uniform Point Contact ver 31. Environmental Data Initiative. https://doi.org/10.6073/pasta/7b9f59d4875c4e235448dd42ff7044ad. Accessed 01/09/2022. (2022).


  • Read More

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button